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We have robust reaction theories and flexible data evaluation tools to describe a wide 
variety of reactions

§ Multiple reaction mechanism & types
— Direct, resonance, compound (overlapping 

resonances)
— n-induced, charged-particle
— g emission, particle emission, fission

§ Evaluations
— Tools: coupled-channels, R-matrix, 

Hauser-Feshbach codes
— RIPL-3 parameters
— Covariances

§ Reaction theories
— Contain simple nuclear              

structure description 
— Adjust parameters to          

experimental data

Leal, EPJ Conf 239, 11004 (2020)
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FIG. 74: Measured and evaluated cross sections for the
238U(n,γ) reaction from 0.02 to 2 MeV.
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FIG. 75: Measured and evaluated cross sections for the
238U(n,γ) reaction from 0.02 to 30 MeV.

experiments having different degrees of hardness in their
neutron spectra, discussed in Sec. V (see also Ref. [1],
pg. 3018). Above 7.5 MeV, the evaluation is based on the
experimental data, closely following our covariance anal-
ysis. In the 14-MeV region, the evaluation is consistent
with the data of Barr et al. [58].

We compare the (n,2n) cross section evaluation in Fig.
76 with the experimental data base and with other eval-
uations from threshold to 20 MeV. Experimental data
from Pepenik et al. [56], Kornilov et al. [57], Barr et
al. [58], Frehaut et al. [59], [60], Veeser and Arthur [61],
Karius et al. [62], Raics et al. [63], Konno et al. [64],
Golovnya et al. [65], Filatenkovet al. [66], and Knight
et al. [70] are shown in Fig. 76.

The evaluated 238U(n,3n) cross section from threshold
to E

n
=17 MeV is based on the GNASH analysis. From 17

to 20 MeV, the GNASH analysis was modified to agree
with experiment and renormalized above 20 MeV. The
(n,3n) results are compared to the other evaluations and
to the measurements of Allen et al. [68], White [44],
Frehaut et al. [59], Veeser and Arthur [61], Matheret
al. [67], and Mather and Pain [69] in Fig. 77.
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FIG. 76: Evaluated and experimental cross sections for the
238U(n,2n) reaction from threshold to 20 MeV.
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FIG. 77: Evaluated and experimental cross sections for the
238U(n,3n) reaction from threshold to 30 MeV.

The evaluated 238U(n,4n) cross section was taken di-
rectly from the GNASH analysis. It is in reason-
able agreement with the measurement of Veeser and
Arthur [61]. The energy-angle neutron emission distri-
butions from the GNASH analysis were used directly
for the (n,2n), (n,3n), and (n,4n) reactions, utilizing
Kalbach [51] angular distribution systematics.

7. n+238U elastic scattering cross section and angular
distributions

The evaluated elastic scattering cross section is deter-
mined by subtracting the sum of all nonelastic reactions
from the total cross section. Because both the total and
fission cross sections were determined from experimental
data and several of the nonelastic channels were adjusted
to improve agreement with measurements, the evaluated
elastic cross section is not identical to the result of the
coupled-channels optical model calculations. However,
the difference is not large, as can be seen by comparing
the evaluated elastic cross section here with the optical

2627
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The various evaluations are reasonably consistent over
most of the 0-30 MeV energy interval, except for the
lower and higher energies.

14. 238U delayed neutron multiplicity and spectra

New delayed neutron multiplicities and decay con-
stants are included in the ENDF/B-VII evaluation. The
methodology followed for the evaluations is described in
Sec. II.B.5. The spectra for the delayed neutrons were
adopted from ENDF/B-VI.8.

15. Energy release from fission of 238U

Similar to our n+235U evaluation, the energy release
data from fission was modified on the basis of the new
Madland analysis [159]. That is, the average total fis-
sion product kinetic energy and the average total prompt
fission gamma-ray energy were taken from the Madland
analysis. The average total prompt fission neutron ki-
netic energy was obtained from our ENDF/B-VII evalu-
ated fission neutron spectra and prompt neutron nubar,
and the remaining smaller contributions from delayed
neutrons, gammas, betas, and neutrinos were carried
over from the ENDF/B-VI.8 evaluation. The Q-value
for the 238U(n,f) reaction was changed from 198.06 MeV
to 198.032 MeV to maintain consistency with these new
energy release values.

H. n+239U evaluation

1. 239U summary

No previous evaluation of n+239U reactions existed in
the ENDF/B, JEFF, or JENDL databases prior to the
issuing of our ENDF/B-VII evaluation. This evaluation
covers the energy range from 10−5 eV to 30 MeV. Some
key features of the evaluation are:

a The systematic analysis of uranium isotopes de-
scribed in Section II was utilized in obtaining all
n+239U cross sections.

b The isospin-dependent coupled-channel optical
model potential given in Table II [3] was used to
calculate the neutron total cross section, elastic and
inelastic scattering cross sections, elastic scattering
angular distributions, and reaction cross sections,
as well as transmission coefficients for the reaction
theory calculations.

c The surrogate data of Younes and Britt [232] were
utilized in our evaluation of the 239U(n,f) cross sec-
tion.

2. 239U resonance parameters

The ENDF/B-VII n+237U resonance parameters were
adopted for n + 239U at neutron energies below 10
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FIG. 85: Comparison of angle-integrated neutron emission
spectra calculated from evaluations with measurements of
Baba et al. and Matsuyama et al. at En=4.25, 6.10, 18.0
MeV.

keV. The resolved resonance parameters cover the en-
ergy range 10-5 to 102.5 eV; the unresolved resonance
parameters span the range 102.5 eV to 10 keV. The
resonance analysis was suitably joined with the present
smooth cross section analysis at 10 keV. As noted in Sec.
IV.F.2, deficiencies in the unresolved resonance region
need to be corrected in the next issue of ENDF/B-VII.

2632
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lated with reliability.
We used the results of these analyses along with sim-

pler analyses of measured first-chance fission data with
the COMNUC code to estimate the systematics of the
fission barrier heights. These results were used to cal-
culate cross sections for the unmeasured uranium targets
such as 240U and 241U. The inner and outer fission barrier
heights obtained in the GNASH and COMNUC analyses
of the uranium isotopes are shown in Fig. 8.

As an example of results from our analysis, our cal-
culated 238U(n,f) cross section is compared to the mea-
surements of Lisowski [53] and Behrens [54] between
neutron energies of 0 and 30 MeV in Fig. 9. Our evalu-
ated ENDF/B-VII 238U(n,f) cross section is also included
in Fig. 9 for comparison. As described below, the evalu-
ated curve is based on the ENDF/B-VII standard cross
section analysis [6], which has very small uncertainties.

Because the fission barriers in GNASH are uncoupled,
the rapid rise of the first-chance fission cross section near
E

n
=1.5 MeV is not exactly reproduced. Similarly, there

is a slight energy-shift between the calculated and exper-
imental cross sections near the onset of second-chance
fission at E

n
∼ 6.5 MeV. At all other energies, however,

the calculation falls within ∼ 5% of the mean of the data
and is better in most regions. We judged this GNASH
result to be satisfactory for describing competition of the
fission channel. Of course, improved fission and level den-
sity models (e.g., see Ref. [55]) could improve our fission
cross section calculations, particularly at lower energies.

2. (n,xn) Cross sections

As (n,xn) examples, the results from our GNASH cal-
culations of the 238U(n,2n) cross section is compared to
measurements and to our ENDF/B-VII evaluation in Fig.
10, and a similar comparison is given for the 238U(n,3n)
cross section in Fig. 11. Because the neutron transmis-
sion parameters were determined from the optical po-
tential, the fission barrier parameters by fits of the (n,f)
cross section, the level density parameters from measure-
ments of 〈D0〉, and the preequilibrium parameters from
default values, no ad hoc parameter adjustments were
made prior to the (n,xn) calculations.

The experimental 238U(n,2n) and (n,3n) data from
Pepenik et al. [56], Kornilov et al. [57], Barr et al. [58],
Frehaut et al. [59], [60], Veeser and Arthur [61], Karius
et al. [62], Raics et al. [63], Konno et al. [64], Golovnya et
al. [65], Filatenkov et al. [66], Mather et al. [67], Allen et
al. [68], White [44], Mather and Pain [69], and Knight et
al. [70] are compared to the GNASH calculations and to
our evaluated ENDF/B-VII cross sections in Figs. 10 and
11. The calculated (n,2n) cross section in Fig. 10 agrees
well with the data of Knight et al. between threshold and
10 MeV, but the Knight data are somewhat higher than
the other measurements at E

n
=9-10 MeV. We decided

to follow the higher Knight et al. data for the evaluation
in the threshold region, both because of the GNASH pre-
diction and because of its consistency with the integral
critical assembly data testing for the (n,2n) reaction rate
discussed in Sec. V. Additionally, the (n,2n) calculations
appear a little higher than the data between 15 and 20
MeV. Near threshold and at most energies to 15 MeV,

228 232 236 240 244
Atomic Number

5.2

5.6

6.0

6.4

Ba
rri

er
 H

ei
gh

t (
M

eV
)

 Inner Fission Barriers
Outer Fission Barriers

FIG. 8: Fission barrier heights for uranium isotopes obtained
from the GNASH analysis.
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FIG. 9: Measured and calculated fission cross section from 0
to 30 MeV.

however, the calculation agrees closely with the experi-
mental data. The (n,3n) cross section over predicts the
experimental data near 22 MeV but is in good agreement
with the measurements from threshold to 18 MeV.

3. Radiative capture cross section

We used a value of 2πΓ
γ
/D0=0.007 for our 238U cal-

culations, determined from experimentally inferred val-
ues of Γ

γ
and D0 [17], to normalize the gamma-ray

strength function in the Kopecky and Uhl [48] gener-
alized Lorentzian model utilized by GNASH. Our cal-
culated (n,γ) cross section is compared to experimental
data and to our evaluated ENDF/B-VII result (see Sec.
IV.G.5) between E

n
=0.01 and 30 MeV in Fig. 12. The

experimental data included in Fig. 12 are from the mea-
surements of Drake et al. [71], Kazakov et al. [72], Pan-
itkin and Tolstikov [73], [74], Rimawi and Chrien [75],
Block et al. [76], Poenitz et al. [77], Lindner et al. [78],
Ryves et al. [79], Davletshin et al. [80], [81], and Mc-
Daniels et al. [82]. In general, the calculation agrees well
with most of the measurements, especially those of Lind-
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Predictive power of reaction calculations is limited…
… and this provides an opportunity for indirect reaction methods

§ Challenges:
— Ambiguous model combinations, large parameter uncertainties, and multiple 

reaction channels produce large uncertainties in reaction calculations
— Away from stability, where few/no constraints are known, minor processes 

may become significant

§ Needed – a multipronged approach:
— development of predictive microscopic structure and reaction theories
— direct measurements (where possible) to validate theory 
— indirect measurements to constrain theory

§ Opportunities with indirect reactions:
— Provide specific ingredients for theory, constrain parameters and components 

of the theory
— Provide new insights into reaction mechanisms and test our overall 

understanding of nuclear structure and reactions

§ Examples: 
— charged-particle inelastic scattering and transfer reactions to determine n-

induced CN cross sections 

A. Arcones et al. / Progress in Particle and Nuclear Physics 94 (2017) 1–67 9

Fig. 2. Schematic outline of the various nuclear reaction sequences in astrophysical environments (colored lines) on the chart of nuclides. Stable isotopes
are marked as black squares. A broad range of nuclei are produced in astrophysical environments. The FRIB radioactive beam facility will provide access
to the unstable nuclei that participate in many astrophysical processes, most of which have never been observed in a laboratory. Stable, gamma, and
neutron beam facilities are needed to measure reactions with stable nuclei in stellar burning and the s-process. Note that many of these processes such
as the ⌫p-process, supernova core processes, and neutron star processes have only been identified in the last decade and are not well understood. The
recently discovered i-process operates parallel to the s-process a few mass units towards the neutron rich side and is not yet included in this figure. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: Figure from Frank Timmes.

s-process nuclei serve as seeds for the p-process, the nucleosynthetic outcome of the p-process. Of similar importance are
the neutron capture rates on abundant nuclides that absorb neutrons, so called neutron poisons. During advanced burning
stages and during explosive nuclear burning triggered by the shock wave passing through the star when it explodes as a
supernova, proton, neutron, and ↵ induced reactions on heavier stable and unstable nuclei become important.

Masses, �-decay properties, and neutron capture rates on hundreds of unstable nuclei are critical for modeling various
r-processes and the i-process. In the case of the r-process, the nuclei are very far from stability (see Fig. 4) and many have
not yet been produced in laboratories to date. Nevertheless, progress has been made. A wide range of mass measurements
for increasingly unstable nuclei have been successfully carried out using time-of-flight and Penning trap techniques. �-
decay measurements now reach beyond the N = 50 shell in the Ga–Ge region covering the beginning of the r-process, and
similarmeasurements at RIKEN are now verging on the r-processwaiting points in the Rb–Zr region. FRIBwill be essential in
expanding the reach of r-process experiments to cover a significant portion of the r-process path (see Section 3.2). Neutrino
interactions play an important role in the r-process and can also produce some rare isotopes in the so called ⌫-process.

For the recently discovered i-process, a neutron capture process with time scales intermediate to the s- and r-process,
the critical nuclei are close to stability. However, accurate neutron capture rates are needed, which are very difficult to
determine experimentally for unstable nuclei. Techniques to carry out such measurements, such as the surrogate approach
using (d, p) and other transfer reactions, are critical. Pioneering measurements have been carried out, for example in the
132Sn region. Promising progress has also been made in utilizing inverse photodissociation or Coulomb breakup processes
as in the case of 60Fe, but all these techniques need to be developed further through experimental and theoretical work.
�-decay, proton capture, (p, ↵), and (n, p) reactions on unstable neutron-deficient nuclei need to be understood for models
of the ⌫p-process as well as nucleosynthesis in nova explosions.

p-process models require reliable (� , n), (� , p), and (� , ↵) reactions on 100s of stable and unstable neutron-deficient
nuclei. The need for experimental data is underlined by findings of large discrepancies between statistical model predictions
and measurements of reactions that involve ↵-particles. Measurements can be performed with � -beams (see Section 3.1)
or, taking advantage of quasi-virtual photons, via Coulomb breakup. However, in many cases, a measurement of the inverse
particle induced capture reaction, and the application of time-reversal invariance, is preferable and is currently a standard
tool for p-process studies. Currently the community worldwide is developing techniques to measure the relevant capture
reactions using radioactive targets or beams. The ReA3 facility at the NSCL and later at FRIB is ideal for such measurements
at astrophysical energies.

Nuclear theory is critical to complement experimental information (see Section 3.6). Even with new facilities expected
to fill in much of the missing information in the coming decade or two, theory is needed to reliably predict properties
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Oslo method produces compound nucleus and extracts g strength function and level density 
from measured g decay spectra

§ Principle:
— Transfer reactions and inelastic scattering produce compound 

nucleus (CN) of interest
— Measure g-decay probabilities
— Establish connection to product of g strength function (gSF) 

and level density (LD), then disentangle
— Use gSF and LD in HF calculation of neutron capture reaction

§ Challenges:
— Separation of gSF and LD is ambiguous, requires auxiliary 

information
— Electric and magnetic gSFs are not distinguished in the 

experiment
— Effects of spin and parity on decay of compound nucleus (CN)
— Does the system equilibrate?

§ Theory developments:
— Incorporating spin-parity predictions to improve analyses
— Statistical uncertainty propagation
— Needed: Auxiliary information to separate gSF and LD

Goriely, EPJA 55, 172 (2019)

g emission probabilities in matrix form
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b-Oslo method measures b-delayed nucleus g emission and extracts g strength function 
and level density

§ Principle:
— Produce nucleus of interest via b decay
— Analysis analogous to traditional Oslo method
— Advantage: ability to reach nuclei far from stability 

§ Challenges:
— Separation of g strength function and level density is 

ambiguous, requires auxiliary information
— b decay is very selective
— Few spins populated
— Does the system equilibrate?

§ Theory developments: 
— Integrating b decay theory with g emission 

description
— Needed: Testing nuclear structure effects
— Needed: Understanding compound-formation after b

decay and signatures
Larsen, PPNP 107, 69 (2019)

b decay of 76Ga, followed by g emission
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Surrogate reactions method combines theory and experiment to constrain cross section 
calculations for compound reactions 

Neutron capture
n

87Y
unstable

Surrogate reaction

pd

89Y
stable

88Y

g
n

Problem: 87Y(n,g) 
calculations are highly 
uncertain

Solution: Constrain 
calculation with 
surrogate data

A Surrogate experiment gives

P(p,dg) (E) =SJ,p F(p,d)CN(E,J,p).GCN
g(E,J,p)

87Y(n,g) cross section:

s(n,g) = SJ,p sn+target
CN (E,J,p) . GCN

g(E,J,p)
From 

experiment

From 
theory

To be 
determined

Well modelled from 
nuclear theory

The new cross 
section we want

§ Principle:
— Transfer reactions and inelastic 

scattering produce compound nucleus 
(CN) of interest

— Theory provides formation cross 
section for CN

— Combine theory & experiment to 
obtain desired cross section

§ Challenges:
— Calculate spin & parity properties of 

doorway state in surrogate reaction
— Does the system equilibrate?

§ Theory developments:
— Describe mechanisms for populating 

doorway states, for inelastic scattering 
and transfers

— Integrate with decay modeling
— Bayesian parameter inference

*Width fluctuation corrections are omitted 
here, but accounted for in applications.
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contributions are added to this and the resulting distribution
is used in a Hauser-Feshbach-type calculation that models
the CN decay.
With FCN

δ ðEex; J; πÞ obtained in this manner, we can
derive constraints for the decay models, using the measured
coincidence probabilities Pexpt

δγ and Eq. (2). We express the
GCN

γ ðEex; J; πÞ in terms of well-established functional
forms for level densities and transmission coefficients
[20,52], with parameters that are to be determined.
Sensitivity studies establish reasonable parameter ranges:
the level density model [53] used has four (five) adjustable
parameters for 88Y (91Zr). The γ-ray transmission coeffi-
cient is dominated by electric and magnetic dipole tran-
sitions, requiring nine parameters to be varied [52,54–56].
The neutron transmission coefficients are known quite
accurately for the nuclei considered [36] and are not varied.
For isotopes far from stability, where transmission coef-
ficients are less well known, such variations should be
carried out. To account for uncertainties in the calculated
FCN
δ ðEex; J; πÞ, we vary the weights schematically by

shifting the overall distribution by #1ℏ.
Each parameter set leads to predicted coincidence

probabilities according to Eq. (2). A comparison with
the measured probabilities then leads to the sought-after
parameter constraints. In practice, this comparison is
carried out using a Bayesian Monte Carlo approach
[57,58], which allows us to simultaneously account for
uncertainties in the data, the structure information utilized,
and shortcomings in the theoretical description. The pro-
cedure yields the desired (n, γ) cross section, along with its
uncertainty.
Six γ-ray transitions in 88Y are used to determine the 88Y$

decay parameters. To emphasize the energy region of
interest to neutron capture, data from 0.5 MeV below to

1.5 MeV above the neutron separation energy are utilized.
Data at lower energies serve as a check for the quality of the
approach. Figures 3(a)–3(f) show that all transitions are
simultaneously well reproduced, even at the lower energies.
The effects of the IAS are clearly seen and reproduced. As
an additional check, we compare a predicted and measured
γ-ray transition in 87Y [see Fig. 3(g)]. The extracted
87Yðn; γÞ cross section, shown in Fig. 4, is higher than
existing evaluations, which rely on regional systematics,
and has a 1σ uncertainty of about #25%.
For the 90Zrðn; γÞ case, we use five γ transitions and,

again, restrict our fit to data around the separation energy
(Sn ¼ 7.19 MeV). The fit reproduces the data well in the
energy range of interest (Fig. 5). The resulting 90Zrðn; γÞ
cross section, shown in (f), agrees with available direct
measurements and evaluations, both in shape and magni-
tude. Its average is about a factor 2 larger than the data, but

FIG. 3. Probabilities for observing specific γ-ray transitions in coincidence with the outgoing deuteron. Results of the fit (gray 1σ
bands) are compared to experimental data (black symbols). Fitting range and separation energy Sn are indicated. (a)–(f) Transitions in
88Y; (g) gives a transition in 87Y. IAS contributions result in dips or peaks at specific energies.

FIG. 4. The 87Yðn; γÞ cross section, extracted from the surro-
gate data, with 1σ uncertainty (blue curves, gray band). The
TENDL 2015 (brown curves, with hatched 1σ uncertainty) and
Rosfond 2010 evaluations are based on regional systematics
[59–61]. No direct measurements exist.

PHYSICAL REVIEW LETTERS 121, 052501 (2018)

052501-4

Escher et al, PRL 121 (2018)

Surrogate (p,d) transfer reactions enable determination of unknown (n,g) reaction cross 
sections

Surrogate (p,d) reaction§ Opportunities:
— Important (n,g) reactions become accessible 
— Wide range of ‘equivalent neutron energy’ is measured with fixed beam energy
— Example: 87Y(n,g) from 89Y(p,dg) data
— Isomer cross sections accessible

§ Challenges:
— Nucleon removal produces holes deep in nucleus
— Nucleon removal is accompanied by inelastic excitations
— Experiments often measure decay signatures that require additional modeling

§ Theory developments:
— Leverage dispersive optical model parametrization to describe hole structure 
— Implement two-step reaction description to incorporate inelastic effects
— Integrate nuclear decay scheme

89Y(p,d) similarly 
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Surrogate (d,p) transfer reactions enable determination of unknown (n,g) reaction cross 
sections

MADDALENA BOSELLI AND ALEXIS DIAZ-TORRES PHYSICAL REVIEW C 92, 044610 (2015)

FIG. 1. (Color online) Some key reaction processes induced by a
weakly bound two-body nucleus at low incident energies.

exp(−iĤt/!), with Ĥ being the total Hamiltonian of
the system;

(iii) after a long propagation time tf , to calculate energy-
resolved observables using the wave function !(tf ).

A simple model with two degrees of freedom

As a test case, we will study the 6Li + 209Bi fusion within
a one-dimensional model with two degrees of freedom, where
the 209Bi target and the 6Li fragments ( 4He and 2H) are always
on a line. Figure 2 shows the coordinate system employed in
the model (Jacobi coordinates for a system of three bodies),
with the projectile considered is composed of two bodies (or
fragments). Xc.m. identifies the distance between the target and
the center of mass (c.m.) of the projectile, while ξ gives the
distance between the projectile constituents. M is the mass
of the target nucleus, while m1 and m2 are the masses of the
projectile constituents. The Hamiltonian of the system in terms

FIG. 2. (Color online) Illustration of the one-dimensional three-
body model and its coordinates.

TABLE I. Parameters of the Woods-Saxon nuclear potential,
which are used for different binary systems in the present calculations,
as well as the radius parameter of the uniformly charged sphere for
their Coulomb interactions (last column).

System V0 (MeV) r0 (fm) a0 (fm) r0c (fm)

209Bi − 6Li −50.000 0.950 1.050 1.2
209Bi − 4He −32.931 1.461 0.605 1.2
209Bi − 2H −26.000 1.465 0.668 1.2
4He + 2H −78.460 1.150 0.700 1.465

of these coordinates reads

Ĥ =
P̂ 2

Xc.m.

2µTP
+

p̂2
ξ

2µ12
+ U12(ξ ) + VT 1(Xc.m. − α ξ )

+VT 2(Xc.m. + β ξ ), (1)

where µTP = M(m1 + m2)/(M + m1 + m2), µ12 = m1m2/
(m1 + m2), α = m2/(m1 + m2), β = m1/(m1 + m2). U12 rep-
resents the interaction between the fragments. VT 1 and VT 2
describe the interaction between target and the two projectile
fragments, respectively, which depend on the relative dis-
tances x1 = Xc.m. − α ξ and x2 = Xc.m. + β ξ , as shown in
Fig. 2. Table I presents the parameters of the Woods-Saxon
nuclear potential for the binary systems in the calculations
below, while for their Coulomb interaction the potential of a
uniformly charged sphere was used. Please note that all the
radius parameters provide a critical distance determined by
r0 A1/3, where A is the heaviest mass in the corresponding
binary system. The Coulomb barriers between the projectile
fragments and the target obtained with these potentials are
as follows: (VB,RB) = (21.25 MeV,10.55 fm) for 4He + 209Bi
and (10.08 MeV,11.12 fm) for 2H + 209Bi. These values are
similar to the Sao Paulo potential barriers [10].

To describe fusion of the projectile fragments with the
target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
of the individual potential pockets.

1. Initial wave function

Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as

!(ξ,Xc.m.,t = 0) = %0(Xc.m.) χ0(ξ ), (2)

where χ0 describes the ground state of the projectile and it is
determined by solving the eigenvalue problem,

H̃χn(ξ ) = Enχn(ξ ), (3)
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A simple model with two degrees of freedom

As a test case, we will study the 6Li + 209Bi fusion within
a one-dimensional model with two degrees of freedom, where
the 209Bi target and the 6Li fragments ( 4He and 2H) are always
on a line. Figure 2 shows the coordinate system employed in
the model (Jacobi coordinates for a system of three bodies),
with the projectile considered is composed of two bodies (or
fragments). Xc.m. identifies the distance between the target and
the center of mass (c.m.) of the projectile, while ξ gives the
distance between the projectile constituents. M is the mass
of the target nucleus, while m1 and m2 are the masses of the
projectile constituents. The Hamiltonian of the system in terms
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the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
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(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
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Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as
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where χ0 describes the ground state of the projectile and it is
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with the projectile considered is composed of two bodies (or
fragments). Xc.m. identifies the distance between the target and
the center of mass (c.m.) of the projectile, while ξ gives the
distance between the projectile constituents. M is the mass
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To describe fusion of the projectile fragments with the
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projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
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Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as
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where χ0 describes the ground state of the projectile and it is
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below, while for their Coulomb interaction the potential of a
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radius parameters provide a critical distance determined by
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binary system. The Coulomb barriers between the projectile
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as follows: (VB,RB) = (21.25 MeV,10.55 fm) for 4He + 209Bi
and (10.08 MeV,11.12 fm) for 2H + 209Bi. These values are
similar to the Sao Paulo potential barriers [10].

To describe fusion of the projectile fragments with the
target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
of the individual potential pockets.

1. Initial wave function

Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as

!(ξ,Xc.m.,t = 0) = %0(Xc.m.) χ0(ξ ), (2)

where χ0 describes the ground state of the projectile and it is
determined by solving the eigenvalue problem,
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where µTP = M(m1 + m2)/(M + m1 + m2), µ12 = m1m2/
(m1 + m2), α = m2/(m1 + m2), β = m1/(m1 + m2). U12 rep-
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below, while for their Coulomb interaction the potential of a
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and (10.08 MeV,11.12 fm) for 2H + 209Bi. These values are
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To describe fusion of the projectile fragments with the
target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
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Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as

!(ξ,Xc.m.,t = 0) = %0(Xc.m.) χ0(ξ ), (2)

where χ0 describes the ground state of the projectile and it is
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tances x1 = Xc.m. − α ξ and x2 = Xc.m. + β ξ , as shown in
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channels model to simulate fusion and is equivalent to the
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can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as
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4He + 2H −78.460 1.150 0.700 1.465

of these coordinates reads

Ĥ =
P̂ 2

Xc.m.

2µTP
+

p̂2
ξ

2µ12
+ U12(ξ ) + VT 1(Xc.m. − α ξ )

+VT 2(Xc.m. + β ξ ), (1)

where µTP = M(m1 + m2)/(M + m1 + m2), µ12 = m1m2/
(m1 + m2), α = m2/(m1 + m2), β = m1/(m1 + m2). U12 rep-
resents the interaction between the fragments. VT 1 and VT 2
describe the interaction between target and the two projectile
fragments, respectively, which depend on the relative dis-
tances x1 = Xc.m. − α ξ and x2 = Xc.m. + β ξ , as shown in
Fig. 2. Table I presents the parameters of the Woods-Saxon
nuclear potential for the binary systems in the calculations
below, while for their Coulomb interaction the potential of a
uniformly charged sphere was used. Please note that all the
radius parameters provide a critical distance determined by
r0 A1/3, where A is the heaviest mass in the corresponding
binary system. The Coulomb barriers between the projectile
fragments and the target obtained with these potentials are
as follows: (VB,RB) = (21.25 MeV,10.55 fm) for 4He + 209Bi
and (10.08 MeV,11.12 fm) for 2H + 209Bi. These values are
similar to the Sao Paulo potential barriers [10].

To describe fusion of the projectile fragments with the
target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
of the individual potential pockets.

1. Initial wave function

Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as

!(ξ,Xc.m.,t = 0) = %0(Xc.m.) χ0(ξ ), (2)

where χ0 describes the ground state of the projectile and it is
determined by solving the eigenvalue problem,

H̃χn(ξ ) = Enχn(ξ ), (3)
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(iii) after a long propagation time tf , to calculate energy-
resolved observables using the wave function !(tf ).

A simple model with two degrees of freedom

As a test case, we will study the 6Li + 209Bi fusion within
a one-dimensional model with two degrees of freedom, where
the 209Bi target and the 6Li fragments ( 4He and 2H) are always
on a line. Figure 2 shows the coordinate system employed in
the model (Jacobi coordinates for a system of three bodies),
with the projectile considered is composed of two bodies (or
fragments). Xc.m. identifies the distance between the target and
the center of mass (c.m.) of the projectile, while ξ gives the
distance between the projectile constituents. M is the mass
of the target nucleus, while m1 and m2 are the masses of the
projectile constituents. The Hamiltonian of the system in terms
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The imaginary potentials have the same Woods-Saxon shape:
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Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as
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where χ0 describes the ground state of the projectile and it is
determined by solving the eigenvalue problem,
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the 209Bi target and the 6Li fragments ( 4He and 2H) are always
on a line. Figure 2 shows the coordinate system employed in
the model (Jacobi coordinates for a system of three bodies),
with the projectile considered is composed of two bodies (or
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distance between the projectile constituents. M is the mass
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where µTP = M(m1 + m2)/(M + m1 + m2), µ12 = m1m2/
(m1 + m2), α = m2/(m1 + m2), β = m1/(m1 + m2). U12 rep-
resents the interaction between the fragments. VT 1 and VT 2
describe the interaction between target and the two projectile
fragments, respectively, which depend on the relative dis-
tances x1 = Xc.m. − α ξ and x2 = Xc.m. + β ξ , as shown in
Fig. 2. Table I presents the parameters of the Woods-Saxon
nuclear potential for the binary systems in the calculations
below, while for their Coulomb interaction the potential of a
uniformly charged sphere was used. Please note that all the
radius parameters provide a critical distance determined by
r0 A1/3, where A is the heaviest mass in the corresponding
binary system. The Coulomb barriers between the projectile
fragments and the target obtained with these potentials are
as follows: (VB,RB) = (21.25 MeV,10.55 fm) for 4He + 209Bi
and (10.08 MeV,11.12 fm) for 2H + 209Bi. These values are
similar to the Sao Paulo potential barriers [10].

To describe fusion of the projectile fragments with the
target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
of the individual potential pockets.

1. Initial wave function

Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as

!(ξ,Xc.m.,t = 0) = %0(Xc.m.) χ0(ξ ), (2)

where χ0 describes the ground state of the projectile and it is
determined by solving the eigenvalue problem,

H̃χn(ξ ) = Enχn(ξ ), (3)
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A simple model with two degrees of freedom

As a test case, we will study the 6Li + 209Bi fusion within
a one-dimensional model with two degrees of freedom, where
the 209Bi target and the 6Li fragments ( 4He and 2H) are always
on a line. Figure 2 shows the coordinate system employed in
the model (Jacobi coordinates for a system of three bodies),
with the projectile considered is composed of two bodies (or
fragments). Xc.m. identifies the distance between the target and
the center of mass (c.m.) of the projectile, while ξ gives the
distance between the projectile constituents. M is the mass
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projectile constituents. The Hamiltonian of the system in terms
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which are used for different binary systems in the present calculations,
as well as the radius parameter of the uniformly charged sphere for
their Coulomb interactions (last column).
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+ U12(ξ ) + VT 1(Xc.m. − α ξ )

+VT 2(Xc.m. + β ξ ), (1)

where µTP = M(m1 + m2)/(M + m1 + m2), µ12 = m1m2/
(m1 + m2), α = m2/(m1 + m2), β = m1/(m1 + m2). U12 rep-
resents the interaction between the fragments. VT 1 and VT 2
describe the interaction between target and the two projectile
fragments, respectively, which depend on the relative dis-
tances x1 = Xc.m. − α ξ and x2 = Xc.m. + β ξ , as shown in
Fig. 2. Table I presents the parameters of the Woods-Saxon
nuclear potential for the binary systems in the calculations
below, while for their Coulomb interaction the potential of a
uniformly charged sphere was used. Please note that all the
radius parameters provide a critical distance determined by
r0 A1/3, where A is the heaviest mass in the corresponding
binary system. The Coulomb barriers between the projectile
fragments and the target obtained with these potentials are
as follows: (VB,RB) = (21.25 MeV,10.55 fm) for 4He + 209Bi
and (10.08 MeV,11.12 fm) for 2H + 209Bi. These values are
similar to the Sao Paulo potential barriers [10].

To describe fusion of the projectile fragments with the
target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
of the individual potential pockets.

1. Initial wave function

Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as

!(ξ,Xc.m.,t = 0) = %0(Xc.m.) χ0(ξ ), (2)

where χ0 describes the ground state of the projectile and it is
determined by solving the eigenvalue problem,

H̃χn(ξ ) = Enχn(ξ ), (3)
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exp(−iĤt/!), with Ĥ being the total Hamiltonian of
the system;

(iii) after a long propagation time tf , to calculate energy-
resolved observables using the wave function !(tf ).

A simple model with two degrees of freedom

As a test case, we will study the 6Li + 209Bi fusion within
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below, while for their Coulomb interaction the potential of a
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r0 A1/3, where A is the heaviest mass in the corresponding
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To describe fusion of the projectile fragments with the
target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
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Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as

!(ξ,Xc.m.,t = 0) = %0(Xc.m.) χ0(ξ ), (2)

where χ0 describes the ground state of the projectile and it is
determined by solving the eigenvalue problem,
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where µTP = M(m1 + m2)/(M + m1 + m2), µ12 = m1m2/
(m1 + m2), α = m2/(m1 + m2), β = m1/(m1 + m2). U12 rep-
resents the interaction between the fragments. VT 1 and VT 2
describe the interaction between target and the two projectile
fragments, respectively, which depend on the relative dis-
tances x1 = Xc.m. − α ξ and x2 = Xc.m. + β ξ , as shown in
Fig. 2. Table I presents the parameters of the Woods-Saxon
nuclear potential for the binary systems in the calculations
below, while for their Coulomb interaction the potential of a
uniformly charged sphere was used. Please note that all the
radius parameters provide a critical distance determined by
r0 A1/3, where A is the heaviest mass in the corresponding
binary system. The Coulomb barriers between the projectile
fragments and the target obtained with these potentials are
as follows: (VB,RB) = (21.25 MeV,10.55 fm) for 4He + 209Bi
and (10.08 MeV,11.12 fm) for 2H + 209Bi. These values are
similar to the Sao Paulo potential barriers [10].

To describe fusion of the projectile fragments with the
target, which is an irreversible process, the Hamiltonian in
Eq. (1) is augmented with two strong imaginary potentials,
iWT 1(x1) and iWT 2(x2), which operate in the interior of
the individual Coulomb barriers between the target and the
projectile fragments. This is usually employed in the coupled-
channels model to simulate fusion and is equivalent to the
use of the ingoing-wave boundary condition (IWBC) [4,11].
The imaginary potentials have the same Woods-Saxon shape:
(W0,a0w) = (−50.0 MeV, 0.1 fm), centered at the minimum
of the individual potential pockets.

1. Initial wave function

Because at the initial time the projectile is considered
to be far away from the target, VT 1 and VT 2 in Eq. (1)
can be neglected and the Hamiltonian becomes separable.
Consequently, the initial wave function can be factorized as

!(ξ,Xc.m.,t = 0) = %0(Xc.m.) χ0(ξ ), (2)

where χ0 describes the ground state of the projectile and it is
determined by solving the eigenvalue problem,

H̃χn(ξ ) = Enχn(ξ ), (3)
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Surrogate (d,p) reaction
§ Opportunities:

— Important (n,g) reactions become accessible. 
— Inverse-kinematics experiments at radioactive beam 

facilities
— Examples: 95Mo(n,g), 95Sr(n,g)

§ Challenges:
— Multiple reaction processes lead to observation of 

proton, while only breakup-fusion is relevant
— Decay modeling required

§ Theory developments:
— Describe deuteron breakup and propagation in nuclear 

field
— Describe neutron absorption with optical model 

potential
— Formalism to be extended to deformed systems

Application to 95Mo: Ratkiewicz et al, PRL 122, 052502 (2019)
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Surrogate reactions – Using inelastic scattering
to determine unknown (n,n’) and (n,2n) reaction cross sections

§ Opportunities:
— Important (n,n’) and (n,2n) reactions become 

accessible. Examples: 88Y(n,2n), 168Tm(n,2n)
— Obtain multiple desired reaction cross sections 

simultaneously
— Inverse-kinematics experiments at radioactive beam 

facilities

§ Challenges:
— Compound nucleus highly excited
— Multiple intermediate nuclei involved
— Non-statistical effects expected

§ Theory developments:
— Integrate structure theory into description of surrogate 

reaction (QRPA, deformation, coupled channels)
— Complement studies of (exotic) collective excitations
— Study CN formation and pre-equilibrium emission
— Opportunity: revisit fission applications

89Y*

g
n

88Y*

g
n

87Y*

g
n

Nucleus of interest
For 88Y(n,2n) 

Surrogate reaction

3He3He’

89Y
stable

Nucleus of interest
For 88Y(n,n’) 

Nucleus of interest
For 88Y(n,g) 

Unknown 88Y(n,2n) cross section from inelastic scattering

Benchmark: 90Zr(n,2n) cross section is known
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Inelastic scattering and transfer reactions provide insights into the fission process

Describing fission challenges theory (and experiment)
• Descriptions range from phenomenological to microscopic
• Lots of data needed to provide constraints

Opportunity: Surrogate fission measurements 
• Observe fission properties in coincidence with surrogate ejectile
• Control over energy of fissioning nucleus, including sub-threshold
• Multiple surrogate reactions in one experiment
• Utilize new theory tools that track fission properties

237Pu(n,f) from surrogate measurement
Huges et al, PRC 90, 014304 (2014)

Fragment mass distributions
Chiba et al, NDS 119, 229 (2014)

Schematic view of fission Fission barriers from surrogate data 
Back, EPJConf. 232, 03002 (2020)



11
LLNL-PRES-xxxxxx

Moving far from stability brings additional challenges for theory 

§ Challenges away from stability:
— Extrapolations become unreliable: optical models, g strength 

functions, level densities
— Uncertainties are unknown: need to go beyond ‘plugging in’ 

all different models supplied by HF codes
— Statistical descriptions are limited to regions of high level

density

§ Opportunities:
— Inverse-kinematics experiments at radioactive beam facilities

§ Needs:
— Develop and incorporate information from microscopic 

theories 
— identify suitable experiments to validate and inform theories

A. Arcones et al. / Progress in Particle and Nuclear Physics 94 (2017) 1–67 9

Fig. 2. Schematic outline of the various nuclear reaction sequences in astrophysical environments (colored lines) on the chart of nuclides. Stable isotopes
are marked as black squares. A broad range of nuclei are produced in astrophysical environments. The FRIB radioactive beam facility will provide access
to the unstable nuclei that participate in many astrophysical processes, most of which have never been observed in a laboratory. Stable, gamma, and
neutron beam facilities are needed to measure reactions with stable nuclei in stellar burning and the s-process. Note that many of these processes such
as the ⌫p-process, supernova core processes, and neutron star processes have only been identified in the last decade and are not well understood. The
recently discovered i-process operates parallel to the s-process a few mass units towards the neutron rich side and is not yet included in this figure. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: Figure from Frank Timmes.

s-process nuclei serve as seeds for the p-process, the nucleosynthetic outcome of the p-process. Of similar importance are
the neutron capture rates on abundant nuclides that absorb neutrons, so called neutron poisons. During advanced burning
stages and during explosive nuclear burning triggered by the shock wave passing through the star when it explodes as a
supernova, proton, neutron, and ↵ induced reactions on heavier stable and unstable nuclei become important.

Masses, �-decay properties, and neutron capture rates on hundreds of unstable nuclei are critical for modeling various
r-processes and the i-process. In the case of the r-process, the nuclei are very far from stability (see Fig. 4) and many have
not yet been produced in laboratories to date. Nevertheless, progress has been made. A wide range of mass measurements
for increasingly unstable nuclei have been successfully carried out using time-of-flight and Penning trap techniques. �-
decay measurements now reach beyond the N = 50 shell in the Ga–Ge region covering the beginning of the r-process, and
similarmeasurements at RIKEN are now verging on the r-processwaiting points in the Rb–Zr region. FRIBwill be essential in
expanding the reach of r-process experiments to cover a significant portion of the r-process path (see Section 3.2). Neutrino
interactions play an important role in the r-process and can also produce some rare isotopes in the so called ⌫-process.

For the recently discovered i-process, a neutron capture process with time scales intermediate to the s- and r-process,
the critical nuclei are close to stability. However, accurate neutron capture rates are needed, which are very difficult to
determine experimentally for unstable nuclei. Techniques to carry out such measurements, such as the surrogate approach
using (d, p) and other transfer reactions, are critical. Pioneering measurements have been carried out, for example in the
132Sn region. Promising progress has also been made in utilizing inverse photodissociation or Coulomb breakup processes
as in the case of 60Fe, but all these techniques need to be developed further through experimental and theoretical work.
�-decay, proton capture, (p, ↵), and (n, p) reactions on unstable neutron-deficient nuclei need to be understood for models
of the ⌫p-process as well as nucleosynthesis in nova explosions.

p-process models require reliable (� , n), (� , p), and (� , ↵) reactions on 100s of stable and unstable neutron-deficient
nuclei. The need for experimental data is underlined by findings of large discrepancies between statistical model predictions
and measurements of reactions that involve ↵-particles. Measurements can be performed with � -beams (see Section 3.1)
or, taking advantage of quasi-virtual photons, via Coulomb breakup. However, in many cases, a measurement of the inverse
particle induced capture reaction, and the application of time-reversal invariance, is preferable and is currently a standard
tool for p-process studies. Currently the community worldwide is developing techniques to measure the relevant capture
reactions using radioactive targets or beams. The ReA3 facility at the NSCL and later at FRIB is ideal for such measurements
at astrophysical energies.

Nuclear theory is critical to complement experimental information (see Section 3.6). Even with new facilities expected
to fill in much of the missing information in the coming decade or two, theory is needed to reliably predict properties
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FIG. 15. (Color online) Chart of the nuclides showing the targets include in the TENDL-2017 and EAF-2010 neutron-induced
reaction libraries. Note that TENDL includes all isomeric states with half life above 1 second, amounting to 544 of the 2813
files.
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FIG. 16. (Color online) Comparison of photonuclear data li-
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1. Proton Sublibrary

For incident protons, the most important, and most
measured, observables are elastic scattering angular
distributions, total non-elastic cross sections, double-
differential particle emission spectra and residual produc-
tion cross sections. The general quality of TENDL for
these reactions is directly related to the quality of the
optical proton models of Ref. [21], and pre-equilibrium

exciton model of Ref. [34] As can be inferred from these
two papers, a rather good description can already be ob-
tained without nuclide-by-nuclide adjustment. Fig. 17
shows an example of TENDL proton cross sections com-
pared with other nuclear data libraries.
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FIG. 17. (Color online) Comparison of proton data libraries
and EXFOR data for the 56Fe(p,n)56Co reaction.

An extensive description of the ENDF-6 procedures
used to build a proton library has been given in [8]. The
TENDL-2017 proton libraries differs in two aspects from

28
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TENDL 2017 neutron libraries
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Indirect methods for direct and resonance reactions 

§ Challenges:
— Cross sections for charged-particle reactions 

become vanishingly small at low energies
— Screening effects in astrophysical 

environments and the lab are different

§ Opportunities:
— ANC method (Asymptotic Normalization Constant)
— Trojan-Horse method
— Coulomb dissociation

§ Theory developments:
— Reduce model dependence of results
— Provide overall consistent descriptions
— Optical models for nucleons and composite 

particles

Closer to drip lines, we will face situations 
similar to those we see now in lighter nuclei…

Massimi et al, PLB (2017)

…but with less structure knowledge!
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Developing indirect reaction methods provides benefits for theory, experiments, and 
applications

§ Theory and experiment are closely connected and rely on each other –
this is particularly true for indirect reaction studies 

§ Having complementary indirect methods is important as no one approach 
covers all needs and cross-checks are needed

§ Fully developing indirect methods will
— test our nuclear structure and reaction theories
— further our understanding of the underlying reaction mechanism
— allow us to determine important unknown cross sections
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Thank you!
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Hauser-Feshbach formalism for compound reactions

Need
• Transmission coefficients Tc for all channels c: 

neutron, proton, charged particles, g, fission
• Level densities
• Discrete levels with J,p
• Width fluctuation correction WFC factors

Formation of CN

Probability for decay of CN

𝜎!"# 𝐸, 𝐽, 𝜋 = 𝜋𝜆!𝜔!
$ )

%&

𝑇!%&
$
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$(

𝜎!"# 𝐸, 𝐽, 𝜋 𝐺'"# 𝐸, 𝐽, 𝜋

𝐺'"# 𝐸, 𝐽, 𝜋 =
∑!!"! "#!!"!

$ #%!(%!)
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Neutron capture reactions

Hauser-Feshbach formalism:

g

n

A+1Z

n+AZ

Etop

Eex

CN 
populatedCN 

reached by
n emission

Sn

g

n

AZ

(n,g) cross sections
for select stable isotopes (ENDF/B-VII)

n

sac = SJ,p saCN (E,J,p) . GCNc(E,J,p)


